Pyoderma - treatment options

Dr. Fiona Bateman BVSc MACVSc DACVD
Disclosures

- Grant/Research Support:
 - Merial

- Consultant:
 - Elanco
 - Zoetis

- Major Shareholder:
 - None
Pyoderma

- Staphylococcus pseudintermedius which represents over 90% of infections in dogs (normal flora)
- Common sequela to allergic, parasitic, endocrine and immune mediated disease
 - Do not forget to look for underlying cause!
- Cytology is key to diagnosis
 - First line treatment is empirical
 - If suspect MRSP/MRSA, then consider culture and sensitivity (see later)
- Pyoderma contributes significantly to pruritus, resulting in self-trauma and continuation of itch-scratch cycle
 - Need to address infections quickly and effectively
Before using antibiotics ask:

Site of infection?
(Barriers to penetration/ activity: abscess, purulent debris, biofilm?)

What class of antibiotic is best?
(ex. beta lactam, lincosamide, fluoroquinolone?)

What is the “most appropriate choice” antibiotic?
(efficacy, PK/PD activity, safety, compliance)

What dose, frequency, duration, route?
Treating Pyoderma

<table>
<thead>
<tr>
<th>Empirical First Choice</th>
<th>Alternative Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalosporins</td>
<td>Fluoroquinolones ??</td>
</tr>
<tr>
<td>Convenia® (cefovecin sodium)</td>
<td>Zeniquin® (marbofloxacin)</td>
</tr>
<tr>
<td>Simplicef® (cefpodoxime proxetil)</td>
<td>Baytril® (enrofloxacin)</td>
</tr>
<tr>
<td>Rilexine®, human generic (cephalexin)</td>
<td>Orbax® (orbifloxacin)</td>
</tr>
<tr>
<td>Cefatabs® (cefadroxil)</td>
<td></td>
</tr>
<tr>
<td>Potentiated penicillins</td>
<td>Lincosamides</td>
</tr>
<tr>
<td>Clavamox® (amoxicillin/clavulanic acid)</td>
<td>Lincomycin® (lincomycin hydrochloride)</td>
</tr>
<tr>
<td>Lincosamides</td>
<td>Macrolides</td>
</tr>
<tr>
<td>Antirobe® (clindamycin)</td>
<td>Human generic erythromycin, azithromycin</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Mupirocin ointment</td>
</tr>
<tr>
<td>Primor® (ormetoprim/sulfadamethoxine)</td>
<td>Antibacterial shampoos, other topicals</td>
</tr>
<tr>
<td>Human generic trimethoprim/sulfonamides</td>
<td></td>
</tr>
</tbody>
</table>

What influences our antibiotic choice?

- Efficacy
- Compliance
- Side effect profile of the antibiotic (including drug interactions)
- Speed of action
- Dosing strategies
- Cost
- Potential to induce bacterial resistance
 - Regional variation in bacterial resistance patterns
- Human (last-line) drug?
Superficial pyoderma - in practice

First line:
- Cephalexin (22 mg/kg q12h or 30 mg/kg q24h) - vomiting may occur at higher doses
- Cefovecin 8 mg/kg q14d for 21-28 days
 - Particularly useful in cats and animals difficult to medicate, or where compliance is a concern

Second line:
- Clindamycin 11 mg/kg q12h
- Fluoroquinolones should be avoided for Staphylococcal pyodermas unless bacterial resistance has been demonstrate\(^1\)

\(^1\) Antibiotic prescribing detailed guidelines, Australian Infectious Diseases Advisory Panel. 2013 Zoetis Australia
How does Convenia measure up?

- **Efficacy**
 - Comparable to other cephalosporins

- **Compliance**
 - Obvious advantages

- **Side effect profile of the antibiotic (including drug interactions)**
 - Comparable to other cephalosporins

- **Speed of action**
 - In tissues in 30 mins
 - Bactericidal within 4 hrs
 - Impact on cytokine and other inflammatory mediator production (e.g. bacterial exotoxins)
How does Convenia measure up?

- Dosing strategies
 - q 14 days
- Cost
 - Sliding scale?
- Potential to induce bacterial resistance
 - Would seem to be at same rate as for cephalexin
 - First generation cephalosporins (cephalexin etc.) do this too\(^2\)
- Regional variation in bacterial resistance patterns
 - Not noted with Convenia
- Human (last-line) drug?
 - No

So let’s talk about bacterial resistance

- Popular misconception that synthetic antibiotics cause resistance

- For millions of years bacteria have been producing natural antibiotics, expressing antibiotic resistance genes for “self protection”
 - Ex. Resistant bacteria isolated in 4 million year old cave in New Mexico; in deep terrestrial subsurface (500-700 feet below surface); permafrost; in remote isolated communities (Peruvian Amazon, Nepal, Bolivia), wild animals

- Bacteria have adapted natural resistance genes to protect against synthetic antibiotics

Use of *any* antibiotic has potential to select for resistant bacteria
What is Methicillin Resistant Staphylococcus (MRS)?

- *Staphylococci* that has lost its sensitivity to most β-lactam antibiotics
 - Ampicillin, amoxicillin
 - Amoxicillin / clavulanate
 - Most cephalosporins (all veterinary approved ceph’s)
 - Oxacillin
 - Ticarcillin

- Oxacillin is used as the C/S “marker” for methicillin
- May be multi-drug class resistant- often resistant to fluoroquinolones
How often is MRS seen in veterinary practice?

Source: PAH 2011 Companion Animal Surveillance Program Data- general practices, dogs/cats

Staphylococcus pseudintermedius
SSTI cultures (n=199)

- Mec A +: 32.2%
- Mec A -:
Species of Staphylococcus is important MRSP ≠ MRSA

- **MRSP - dog, cat source**
 - Most common cause of MR pyoderma in dogs and cats
 - Unlikely to cause zoonotic infection unless owner immunosuppressed
 - Pet owners uncommonly colonized
 - Infected cases can colonize contact animals; hospital, home environment often contaminated
 - Multi-drug resistant to multiple drug classes

When to Suspect MRS and Perform a Culture?7,8

- Cocci on cytology, poor response to cephalosporins, amoxillin-clavulanic acid, fluoroquinolones
- Previous antibiotics in the past 12 months
- Pet recently hospitalized
- Non-healing post-surgical infection
- Owner works in healthcare field, MRSA infection in household
- Therapy dog with pyoderma

Antibiotics Used to Treat MRSP Infections

- MRSP not more pathogenic, just more difficult to treat
- Sometimes: sulfas, clindamycin, doxycycline, minocycline
- Many cases only:
 - Chloramphenicol 40-50 mg/kg q 8 h
 - Amikacin 15 mg/kg SQ inj q 24 h
 - Rifampin 5-10 mg/kg q 24 h
- Combine with antibacterial topical therapy, environmental disinfection

Do we need to treat MRSP systemically?

- Many cases can be resolved with topical therapy alone
 - Chlorhexidine
 - Dakin’s solution (dilute bleach)
 - SSD
 - Mupirocin ointment
Topical Treatment for MRS Pyoderma

► Shampoo daily to twice weekly
 ► 3 - 4% chlorhexidine (Hexadene-Virbac) w/ phytosphingosine (Douxo), TrisEDTA (TrizChlor 4)
 ► Chlorhexidine more effective in vitro for MSSP/MRSP then benzoyl peroxide, ethyl lactate, chloroxylenol, acetic acid-boric acid\(^\text{11}\)
 ► Offer weekly “bathing packages” for pet owners

Topical Treatment for MR Pyoderma

- Chlorhexidine spray, mousse or wipes (Douxo, TrizChlor 4)
- Zymox spray
- 2% Mupirocin ointment
Topical Treatment for MR Pyoderma

- **Bleach baths**12,13
 - 2 tsp/ gallon
 - 1/2 cup per ¼-full tub of water
 - Effective in human MRSA cases, anecdotal reports of success by vet dermatologists

Proper Antibiotic Use- Summary

► All antibiotics can select for resistant bacteria

► Use antibiotics appropriately when a bacterial infection is present and not “just in case”

► USE TOPICALS!!!!
 ► This is becoming the mainstay of treatment for superficial infections, not parenteral antibiotics

► Culture more often
 ► With resistance on the rise don’t wait for treatment failure e.g., recent antibiotic use is indication for culture

► Don’t play antibiotic roulette
Questions?
Factors that may contribute to resistance

▶ What if antibiotics are used without veterinary supervision?

▶ Two year study of 2 breeding kennels

▶ Kennel A- judicious antibiotic use only with veterinary prescription

▶ Kennel B- excessive use of cephalosporins, fluoroquinolones, macrolides without veterinary supervision

▶ Results: 16 MRSP strains isolated from dogs in Kennel B, 0 from Kennel A at end of 2 year period

▶ Conclusion: Use of antibiotics without veterinary supervision can increase risk of colonization with MRSP

Do Certain Antibiotics Contribute to Resistance?

- **What about fluoroquinololones?**
 - Studies in human medicine: hospitalized patients more likely to develop nosocomial MRSA if received ciprofloxacin or levofloxacin\(^{16-18}\)
 - Fluoroquinolones, beta lactams in past 90 days risk factor for MRSA infection in dogs: **author recommends restrict use of FQ’s as empirical or first-line therapy**\(^{19}\)
 - Enrofloxacin treatment in laboratory dogs resulted in development of persistent MDR fecal E.coli\(^{20}\)

\(^{18}\)Nseir S et al. Crit Care Med 33:283-89, 2005
Do Certain Antibiotics Contribute to Resistance?

- Are 3rd generation cephalosporins big guns that should be reserved and not used first line?
 - Cefpodoxime, cefovecin are not “big guns”
 - FDA approved as appropriate first line empirical therapies for superficial Staphylococcal pyoderma²¹
 - Acquiring the gene for methicillin resistance not linked to the generation of cephalosporin used
 - Not used IV in hospital setting for severe infections as in human medicine
 - Not effective against Enterococcus, Pseudomonas, MR Staphylococcus

Do Certain Antibiotics Contribute to Resistance?

- **Do first generation cephalosporins like cephalexin cause less resistance?**

 - **Objective:** To evaluate possible selection of *E. coli* resistant to extended spectrum cephalosporins after treatment with cephalexin

 - **Design:** Treated (cephalexin BID 25 mg/kg 14-28d) and control (no Ab in past 6 m) dogs screened for occurrence of *E. coli sp.* resistant to cefoxatime (human third generation cephalosporin)
Do Certain Antibiotics Contribute to Resistance?

 ▶ Results:
 - 8/13 (62%) of cephalexin treated dogs were positive for cefoxatime – resistant E.coli (CMY-2 β-lactamase positive)
 - No positive growth in control group
 - CMY-2 β-lactamase confers resistance to all β-lactams used in dogs

 ▶ Conclusions
 - Dogs receiving oral first generation cephalosporins may be an important reservoir for CMY-2 β-lactamases (ESBL’s)
 - Cephalexin administration impacts the intestinal E.coli population in favour of resistant strains
When to Use Convenia®?

- Empirical, *first choice* to treat common skin infections in dogs, cats
- Ideal PK/PD profile for time-dependent antibiotic
 - Sustained uninterrupted therapeutic drug concentrations
- Assures 100% compliance
- Excellent safety and efficacy profile

Time-Dependent Antibiotic Efficacy =
Time Above MIC (beta-lactam antibiotics)

Predictor of Efficacy: Time Above the MIC

Treatment Goal
Maximize bacterial killing time by maintaining drug concentration above the MIC for most of the dosing interval; at least 50% of the dosing interval

MIC (Minimum Inhibitory Concentration)
The lowest concentration of drug required to inhibit visible growth of the target organism in vitro
Time Dependent Drugs
“Twice Daily Dosing” vs. CONVENIA®

A Model of a Single Injection of CONVENIA Pharmacokinetics Contrasted with Twice Daily Oral Antibiotics
CONVENIA® is not for use in dogs or cats with a history of allergic reactions to penicillins or cephalosporins. Similar to other cephalosporins, side effects for both dogs and cats include vomiting, diarrhea, decreased appetite/anorexia, and lethargy. The safety of CONVENIA® has not been determined in lactating or breeding animals. Adverse event reporting or technical inquiries should be directed to Pfizer Animal Health Product Support, 1-800-366-5288 or 1-855-424-7349 (USA).

Contemporary Classification

<table>
<thead>
<tr>
<th>Group (Example)</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 1st Generation (cefa-zolin)</td>
<td>Parenteral, resistant to staphylococcal (\beta)-lactamase, sensitive to enterobacterial (\beta)-lactamase, moderately active</td>
</tr>
<tr>
<td>Group 2 1st Generation (cefa-droxi)</td>
<td>Oral, resistant to staphylococcal (\beta)-lactamase, moderately resistant to some enterobacterial (\beta)-lactamase, moderately active</td>
</tr>
<tr>
<td>Group 3 2nd Generation (cefa-clor)</td>
<td>Parenteral, resistant to many (\beta)-lactamases, moderately active</td>
</tr>
<tr>
<td>Group 4 3rd Generation (cefi-orur, cefovecin*)</td>
<td>Parenteral, resistant to many (\beta)-lactamases, highly active</td>
</tr>
<tr>
<td>Group 5 3rd Generation (cepo-do-xime)</td>
<td>Oral, resistant to many (\beta)-lactamases, highly active</td>
</tr>
<tr>
<td>Group 6 3rd Generation (cefo-per-azo, cefta-zidime)</td>
<td>Parenteral, resistant to many (\beta)-lactamases, active against Pseudomonas aeruginosa, highly active</td>
</tr>
<tr>
<td>Group 7 4th Generation (cefe-pilme)</td>
<td>Parenteral, resistant to staphylococcal, enterobacterial, and pseudomonal (\beta)-lactamases, highly active</td>
</tr>
</tbody>
</table>